Chapter 2: Finite State Machines
Finite State Machines are tools used to model the desired behavior of a sequential system.  They consist of several states, and inputs to the machine are combined with the current state of the machine to determine the new state, or next state of the machine.
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State table for the modulo 6 counter

Present State U || NextState | C | W,V V,
So 0 So 1 000
So 1 S 0 001
S 0 S 0 001
S 1 S, 0 010
S, 0 S, 0 010
S, 1 S5 0 011
S5 0 AN 0 011
S5 1 S, 0 100
Sa 0 S, 0 100
Sa 1 Ss 0 101
Ss 0 Ss 0 101
S, 1 So 1 000
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As we learned in a previous class, finite state machines consist of states, which can be said to represent various aspects of an object in question.  One example we used was an automatic sliding door.  The states of the door, open or shut, would represent states on the finite state machine.  The user interaction with door, standing in front of it, to its side, behind it, etc, would represent various inputs.  The door only enters an open state if someone is standing in front of it, so the state only changes on that input.
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As you can see in the state diagram above, any attempt to alter the state besides standing in front of the door results in the state remaining the same.  The start state merely indicates what state the automaton begins.  The table below the state diagram is known as a state table.  The table merely shows the various actions for each state, what the next state would be, and whether or not an action results in a change of state.  Once in the “door opened” state, any movement away from standing in front results in the door closing again, or a return to the “door closed” state.  The curved arrows (MS Word willing) are referred to as arc vertexes and merely show where an action leads.  The conditions of a FSM should be mutually exclusive, that is, no input should meet the conditions of more than one arc.
A finite state machine can represent data in one of two ways.  A Moore machine associates its output with the states.  The example given on the previous page would be considered a Moore machine, as the state of the door is the output desired.  A Mealy machine, on the other hand, associates outputs with the transitions themselves.  Both machines can be used to represent sequential systems, and each has advantages.  Mealy machines are usually more compact, especially when two different outputs head towards the same state.  Moore machines offer a simpler implementation when the output values depend only on the state and not on the transitions.  Machines such as these, which have an input tape and an output tape, are called transducers.
Developing state tables and state diagrams are essential to understanding finite state machines.  To that end, a few examples are provided and explained so that the entire process might be understood.

A Modulo 6 Counter is a 3-bit counter that counts through the sequence 000 ( 001 ( 010 ( 011 ( 100 ( 101 ( 000 (0 ( 1( 2( 3 ( 4 ( 5 ( 0 ( … ).  Unlike a regular 3-bit counter, it does not use the values 110 (6) nor 111 (7).  Its input U controls the counter.  When U = 1, the counter increments its value on the rising edge of the clock.

The finite state machine for this counter must have six states, arbitrarily labeled S0, S1, S2, S3, S4, and S5.  State Si corresponds to counter output I; that states follow the sequence


S0 ( S1 ( S2 ( S3 ( S4 ( S5 ( S0 ( … 

To derive the state table for this counter, look at each state individually; for each state, examine what happens for all possible values of the inputs.  In state S​0, input U can be either 0 or 1.  If U = 0, the state machine remains in state S0 and outputs C = 1 and V2V1V0 = 000.  However, if U = 1, the machine goes to state S1 and outputs C = 0 and V2V1V0 = 000.  However, if U = 1, the machine goes to state S1 and outputs C = 0 and V2V1V0 = 001.  We derive the above state table values for the other states in the same way
Assigning values to states is crucial.  The right assignment of a value to a state can significantly reduce the digital logic overhead needed to create and implement a state machine, while a bad assignment introduces unnecessary complexity that provides no benefit at all.  In terms of digital logic, assigning each state a unique binary value is the way to go.  For a machine with n states, the state value will have log2n bits.  
Again, in the modulo 6 counter, we have six states, S0 to S5.  We need three bits to encode state values for these states.  For now, we assign state value 000 to S0, 001 to S​1, and so on and so forth, up to 101 for S​5.  The figure to the left shows the Mealy and Moore state diagrams for the module 6 counter.
Although any values can be assigned to the states, some assignments are better than others.  A primary goal in assigning state values is to minimize the logic needed to generate the output and next state values.  This is usually a process of trial and error, with the creator selecting initial state values, then creating a preliminary design to generate outputs and next states, then modifying the state values based on the results and repeating.  A good heuristic to follow that simplifies this process is: Whenever possible, have the state values be the same as the output values for that state.  When this is the case, the same combinatorial logic can be used to generate both the next state and the system outputs.
Since both Mealy and Moore transducers must traverse the same states under the same conditions, their next stat logic is identical.  Next state logic can be derived via three different methods: using combinatorial logic gates, using multiplexers, and using a lookup ROM.  Combinatorial logic begins by generating a truth table.  The system inputs and present state value are the inputs of the truth table, and the next state bits are the outputs.  Next, a Karnaugh map is constructed for each output bit and an equation is derived from this.  With multiplexers, each input to the multiplexer corresponds to the next state under one possible value of the system inputs.  The inputs drive the select signals of the multiplexer.  To determine the inputs to the multiplexer, we begin by splitting the truth table into multiple tables, one for each possible value of the system inputs.  Then we follow the procedure as used to derive the next state using combinatorial logic gates.  A third approach is to use a lookup ROM.  In this method, the present state value and all system inputs are connected to the address inputs of the ROM; the next state is derived from the ROM outputs.  The correct value must be stored in each location of the ROM to ensure proper operation.  Keeping the present state bits in order and assigning them to the high-order address inputs simplifies the design process.   This assignment keeps all locations associated with a given state at adjacent locations, which makes it easier to design and debug the system.
In Mealy machines, the table inputs are the present state and the system inputs, and the table outputs are the system outputs.  For Moore machines, only the present state bits are table inputs, since only these bits are used to generate the system outputs.  The system outputs are still the table outputs.  As with next state logic, Karnaugh maps can be constructed to derive equations for the outputs.  The logic for the Moore machine is even simpler, as it’s not even necessary to construct Karnaugh maps to see what generates the system outputs.

Machines can sometimes enter an unused state, also called an unknown state or an undefined state.  This could be caused by a flaw in the design, but most often occurs when the state machine circuitry is powered up.  A well-designed state machine must recover from such a situation and return to normal functioning if it is to be useful.  A common approach to combat this from happening is to create dummy states for all unused state values.  Each dummy state would go to a known state at the next clock cycle, usually to a reset state.
Almost all finite state machines are synchronous; the state value is stored in a register that is loaded on the rising edge of the system clock.  However, it is possible to design a finite state machine that is asynchronous.  This design would consist entirely of combinatorial logic.  There would be no registers in the circuit, nor would there be a system clock.  As a result, asynchronous designs are usually faster than their synchronous counterparts.  A generic design for an asynchronous Moore machine is shown below.
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To illustrate this design method, consider the Moore machine for the original modulo 6 counter.  Since this is a methodology for implementing the machine, the state diagram is used without modification.  The next state and output logic are also the same since the machine traverses the same state sequence.

There are two major problems with asynchronous circuit implementations.  The first is the non-uniformity of gate delays.  The second major problem with asynchronous circuit implementations is that they don’t stop.

There are standard methods for converting between Mealy and Moore state diagrams.  This may become necessary when the desired implementation is changed during the design process, or to compare equivalent implementations before choosing a final design.  Mealy diagrams to Moore diagrams are relatively straightforward.  Start off by replacing each state with a set of m states, where all of the arcs which go into the original state have a total of m different output values.  We associate one of the m output patterns with each new state. (The figure for this diagram and thus its explanation was missing from the figure pack from the publisher of the book, so I’ll continue).  Once the state diagram has been converted, the state machine hardware can be designed using the techniques described earlier.

By comparison, the process of converting from a Moore state diagram to a Mealy state diagram is trivial.  We simply add the output of a state to all arcs that go to that state and remove the output values from the states themselves.  Once the conversion is done, we design the hardware as before.
Door


Closed





Door


Opened








