DIGITAL LOGIC FUNDAMENTALS
There are basically two classes of digital logic. Combinatorial logic, which values output by a combinatorial logic circuit depending solely on its current inputs, and Sequential logic, which values output by a sequential logic circuit depending on both the current inputs and on previous inputs and outputs.

Boolean algebra, from a logic standpoint, is where a Boolean value can be either true or false. No maybes allowed. They’re often expressed as 1 or 0, respectively. The most fundamental function of any digital system is the Boolean function. The various Boolean functions are as follows:

· AND: with AND, its output is 1 if any and only if every input has a value of 1.

· NAND: The complement of AND, NAND outputs a 1 if not all of its inputs are 1.

· OR: With OR, its output is 1 if any of its inputs is equal to 1. Its output is 1 even if all inputs are 1, or only some.
· NOR: NOR is the complement of AND. It produces a 1 if no inputs are equal to 1.

· XOR: The “exclusive OR”, the output is equal to 1 if an odd number of input values are 1, and 0 if an even number of inputs are 1.

· XNOR: The compliment of XOR, also called the “equivalence function”, outputs a 1 if an even number of inputs are 1.

· NOT: Unlike the other functions, NOT operates on a single Boolean value. The output of NOT is the complement of its input.

Each possible set of input values that a Boolean function can have is called a minterm. The number of minterms a function can have is found by taking the numbers of inputs, n, and figuring 2n for the number of minterms. For example, if x and y are the inputs, you could have xy, x’y’, x’y, or xy’ as possible inputs, with ‘ being a notation for the complement.
Another useful device used to represent the values of a function for different input values are Karnaugh maps, or K-maps for short. The rows and columns of the K-map correspond to the possible values of the function’s inputs. Each cell in the K-map represents a minterm. The order of the terms in a K-map is ordered in what we refer to as the Gray code order. Gray code is a binary numeral system where two successive values differ in only one bit.
[image: image17.emf]A Karnaugh map for the function (xy’ + yz)’ with and without groupings. These groupings are achieved by circling adjacent 1’s; the values can be adjacent horizontally or vertically, and wrap as well. The final groups, regardless of size, are called prime implicants. To derive a minimal expression, we must select the fewest groups that cover all active minterms in the K-map, by checking for cells that are covered by only one group. These groups are called essential prime implicants, and must be included in the final expression.

Basic combinatorial logic is represented via logic gates, as show below:

	[image: image2.png]

	[image: image3.png]

	[image: image4.png]

	[image: image5.png]

	[image: image6.png]

	[image: image7.png]

	[image: image8.png]

	AND
	OR
	XOR
	NOT
	NAND
	NOR
	XNOR

The small circles on the NOT, NAND, NOR, and XNOR gates indicate that the output of the gate is complemented, or inverted. In terms of what was discussed earlier, it might be easier to think of a NAND gate as an AND gate which sends its output to a NOT gate (though in the fabrication of actual chips, the opposite is true. A NAND gate sending its output through a NOT gate).

One gate not mentioned previously is the buffer. A buffer does not perform any operations on its input value. Its output is the same as its input.

	[image: image9.png]

	[image: image10.png]Enable

Data Output

Tri-state Buffer

	[image: image11.png]Enable

Data Output

Tri-state Buffer

	regular buffer
	 tri-state buffer with active high enable
	tri-state buffer with active low enable

Buffers send Boolean data of 1 or 0. If the buffer sends 0, the buffer is disabled, and nothing can pass through the indicated gate. If the active low state is enabled, the opposite is true.
A multiplexer, or MUX, is a selector. It chooses one of its data inputs and passes it through to the output.
[image: image1.jpg]@)

YZ| \Z4
™00 01 11 10 x\[00 01 11 10
of 11 1 o[@| o |
1{ofo 1 1{ofo]ollW

[image: image12.jpg]clock — clk
LD

(b)

[image: image13.emf][image: image14.emf][image: image15.emf]In this 4-to-1 MUX shown at the left, four inputs are passed into the MUX. Two select signals are used to determine which of the four inputs are passed through to the outputs. Notice the buffer on the end. If E is equal to 0, regardless of the inputs or selectors, no output is sent. When larger amounts of inputs are needed, MUXs can be cascasded to have a larger selection available.

[image: image16.emf]A decoder accepts a value and decodes it. It has n inputs and 2n outputs, with each output representing one minterm of the inputs. As shown in the figure below, a decoder can have active high or active low enables as well.
An encoder is the opposite of a decoder. It receives 2n inputs and outputs an n-bit value corresponding to the one input that has a value of 1. Note that a third output, V, indicates whether any of the inputs are active.

A comparator compares two n-bit binary values to determine which is greater, or if they are equal. Bits X and Y are compared, and exactly one of the three outputs, X>Y, X = Y, or X<Y is set high.
The circuits used to perform arithmetic operations are constructed using combinatorial logic. Adders are the most common used, to not only perform addition, but subtraction, multiplication, and division as well. The most basic of all adders is the half-adder. It inputs two 1 bit values, X and Y, and outputs their 2-bit sums as bits C and S. Bit C represents the carry and bit S represents the sum. Full adders were developed because circuits must add numbers that are more than one bit wide. It has three inputs: the two data inputs and a carry input. It has the same outputs as a half-adder. With carry inputs, full adders can be cascaded to compute larger numbers. When they’re cascaded like this, they’re referred to as ripple adders.

Memory is a group of circuits used to store data. While they may not be combinatorial in design, they can be used as combinatorial components in digital circuits. A memory component has x number of memory locations, which store binary values of some fixed length. The size varies from chip to chip, but the storage within a single chip is fixed per location. The address inputs of a memory chip chooses one of its locations, represented An-1, An-2, …, 0. The data pins on a memory chip access the data. There is one pin per bit in each location. In addition to the pins. For example, most chips have a chip enable signal, labeled CE, which enables or disables the entire chip. As with tri-state buffers, the CE may be active high or active low.

The two most common types of memory chips are RAM and ROM chips. ROM chips, for read only memory, are considered nonvolatile, that is, their data is stored even when power is removed. Once a ROM chip is programmed with its basic input/output system, or BIOS, it cannot be altered. RAM, or random access memory, on the other hand, is volatile. When it loses power, its data is lost. For this reason, RAM is often used for temporary storage.
Most of the stuff so far has been have been combinatorial in nature. When their input changes, their output often changes as well. With sequential components, a change in input can retain its output.

The most fundamental sequential components are the latch and the flip flop. These store 1 bit of data and pass it on to other components. The main difference for the purposes of this paper, are that latches are are level triggered, while flip flops are edge triggered. Most flip flops and latches have a clock input, made by an oscillator or other circuit that alternates its output between 0 and 1. The simplest type of sequential component is the D latch, or D flip flop, which consist of one data input and a clock input. There are several different variations of these, depending on when the output changes in relation to the clock oscillator. As with other circuits, flip flops and latches may be combined in parallel to store data with more than one bit.

A counter stores a binary value and, when signaled to do so, increments or decrements its value. Like other registers, counters can be loaded with ane xternally supplied value. Some can even be cleared.

A shift register can shift its data one bit positon to the right or left. It’s particularly useful for some hardware multipliers and dividers. This register has several variants. It can shift left, shift right, shift in either direction via external control. It can also load data in parallel or clear its data entirely.

Each of these components can be constructed onto a TTL IC chip. An alternative is to program the components into a single chip. One such device, the Programmable Logic Array, or PLA, contains one or more AND-OR arrays. PLAs take the input and their complements, and make them available to several AND gates. The output of the AND gate is then input to OR gates, which produce the chip’s output.

The Programmable Array of Logic, or PAL, is similar to a PLA, except its OR block is not programmable: certain AND gates serve as portals to specific OR gates. The AND gates are still programmable, however.

PLAs and PALs are limited, since they can only realize combinatorial logic designs. The Programmable Logic Device, or PLD, is needed to realize sequential circutis. PLDs encompass everything that PLAs and PALs are, and much more, by containing several logic blocks. Each logic block in turn contains several macrocells, each of which may be equivalent to a PLA with an ouptut flip flop. An internal incerconnection array can be configured to connect signals between logic blocks.
Field Programmable Gate Arrays, or FPGAs, are about the most complex PLDs available. The contain an array of cells, each of which can be programmed to realize a function. Programmable interconnects between cells allow them to connect to each other. FPGAs usually include flip flops, allowing a desginer to creat ea complex sequential circuit on a single chip. FPGAs often contain the equivalent of 10,000 or more simple logic gates on a single chip.
Figure 3: Encoder � SEQ Figure_3:_Encoder * ARABIC �1�

Figure 2: Decoder

Figure � SEQ Figure * ARABIC �1�: 4-to-1 Multiplexer

Figure 2: Decoder � SEQ Figure_2:_Decoder * ARABIC �2�

Figure 3: Encoder

Figure 4: Comparator

Figure 5: Adders

Figure 6: Positive lvl triggered D latch � SEQ Figure_6:_Positive_lvl_triggered_D_latch * ARABIC �1�

